

BEAM DYNAMICS PROBLEMS FOR X-RAY FEL OSCILLATOR (XFELO)

KWANG-JE KIM

ANL and U. Chicago

September 20, 2017 Arcidosso, Tuscany, Italy

X-RAY FREE-ELECTRON LASER OSCILLATOR (XFELO) Eirst proposed by R

- R. Collela and A. Luccio (1983)
- Revived by KJK, Y. Shvyd'ko, S. Reiche (2008)
- Bragg reflectors for hard x-rays (5 –25 keV)

XFELO WITH 8 GEV 8-GEV 1 MHZ SCRF LINAC \rightarrow \Re ~10²⁸ #/(MM² MR² 0.1%BW)

- Δω/ω (FWHM)~ 10⁻⁷ ~ 10⁻⁴ × SASE
- ℬ = #/∠∞/∞ → ℬ (XFELO)/ ℬ (SASE) ≥ 100 !!

XFELO MAJOR PARAMETERS

W. Qin, R. Lindberg

Parameter	4.9 keV	10 keV	14.4 keV	14.4 keV	14.4 keV	20 keV	24.2 keV
Electron gun	SCRF	SCRF	NCRF	NCRF	SCRF	SCRF	SCRF
FEL K	3.2128	2.0125	1.4304	1.4837	1.4837	1.0125	1.1539
Ebeam [GeV]	7.982	7.982	3.994	7.982	7.982	7.982	7.982
$\varepsilon_n \ [\mu m]$	0.25	0.25	0.35	0.35	0.25	0.25	0.25
σ_E [keV]	130	130	70	70	130	130	130
λ_u [cm]	2	2	2.6	2	2	2	1.5
N _u	1000	1000	1250	1000	1000	1000	2000
harmonic number	1	1	5	1	1	1	1
Z_R [m]	10	10	10	10	10	10	15
Bragg crystal	C(220)	C(440)	C(733)	C(733)	C(733)	C(880)	C(888)
Output coupling	4%	4%	4%	4%	4%	4%	5%
Pulse energy $[\mu J]$	3.1	21	0.3	7	28	11	4.4
Spectral FWHM [meV]	10.9	5.4	5.8	3.9	3.4	2.7	1.3
Temporal FWHM [fs]	138	530	400	557	693	905	1989
$\sigma_{\tau}\sigma_{\omega}$ (FWHM)	2.27	4.37	3.52	3.26	3.58	3.67	4.06
# of Photons/pulse	3.9×10^{9}	1.3×10^{10}	1.3×10^{8}	3.1×10^{9}	1.2×10^{10}	3.4×10^{9}	1.1×10^{9}
Spectral flux [ph/s/meV]	3.6×10^{14}	2.4×10^{15}	2.2×10^{13}	7.9×10^{14}	3.6×10^{15}	1.3×10^{15}	8.5×10^{14}

Table 1: XFELO simulation parameters and output pulse properties (the repetition rate is assumed to be 1 MHz).

ADVANCED SCHEME I: MOPA WITH FUNDAMENTAL OR HARMONIC GENERATION

KJK, R. Lindberg, & J.H. Wu (MaRie WS, 2016), W. Qin, KJK, RL, JW, FEL 2017)

- MOPA: XFELO → HG amplifier with intense, ultrashort e-bunch
 Ultrashort X-ray pulses, similar to SASE but coherent and stable
- MOHGHG: XFELO→ Harmonics→ HG amplifier
 Photon energy up to 40-60 keV (MaRIE)

XFELO-HGHG PERFORMANCE

W. Qin, R. Lindberg, J. Wu, KJK

ADVANCED SCHEME II: SPECTRAL COMB FOR HARD X-RAYS

- Stabilize the roundtrip path length to fraction of wavelength with FB referenced to
 - Narrow nuclear resonance ⁵⁷Fe
 - Stabilized optical laser (optical comb)
- ~ 10^6 spectral lines of neV width separated by 12 neV.
- B. Adams and KJK, PRSTAB (2015)

XFELO SCIENCE RETREAT AT SLAC (6/29-7/1, 2016)

Sciences for high spectral brightness and ultra-fine spectral resolution

- Enhanced application of techniques developed at 3rd gen and SASE sources
 - IXS, XPCS, NRS
 - Smaller samples, faster data collection, high resolution..
- Techniques in infancy at current sources will become practical tools
 - Medical applications of NRS
 - X-ray NLO, study of red cells without enriching the excited states of Fe
- Emergence of new areas
 - X-ray spectral comb→ fundamental sciences with extreme metrology, revolutionizing nuclear physics

TECHNICAL ISSUES

Much progress has been made during the last ten years

Electron accelerator

- Electron injector optimization
- High-energy (~ 8 GeV) SCRF linac: LCLS-II-HE, Shanghai, Retrofitting the EuroFEL linac
- XFELO beam dynamics
 - Use GINGER for amplification and add x-ray propagation and crystal reflection properties. Transvers-temporal coupling is not included yet.

X-ray optics

- Focusing elements: curved grazing incidence mirrors, CRLs
- Bragg mirrors: diamond crystals
 - Reflectivity
 - Thermo-mechanical properties
 - Diamond survival/Endurance under intense x-ray environment

ACCELERATOR CONFIGURATION

- LCLS-II-HE (8 GeV)
- "Advanced photocathode gun": Wisconsin SCRF gun(40 MeV/m at cathode) or APEX II

OPTIMIZATION OF INJECTOR-LINAC PARAMETERS

- X-ray pulse: $\Delta \tau \times \Delta \omega / \omega = \lambda / (2c)$ (FWHM): For 10 20 keV $\rightarrow \Delta \tau \sim$ ps \rightarrow The electrons' energy profile should be flat (within incoherent spread) over \sim ps
- Shape the current profile at the cathode to linearize the wake-induced energy loss & use a de-chirper to remove the slope (K. Bane, W. Qin)
- RF phase, beam current, bunch compressor and WF talk to each other
- S2E simulation: Injector (ASTRA), linac (LiTrack), XFELO (GINGER)

OPTIMIZATION : APEX II & LCLS-II-HE

With shaping & and higher gradient

<u>gun</u>

- about twice useful charge in the flat part
- better emittance
- Higher energy spread (injector current lower than APEX)

- Over 600 fs flat part, 120 A peak current
- Low slice emittance and slice energy spread
- Projected energy spread 0.02%

X-RAY CAVITY AND UNDULATOR

- Works best where Bragg scat. has high R and not-to-narrow BW--- 5-25 keV
- For 14.4 keV λ_{U} =2 cm, K=1.49 \rightarrow SC NbTi : Kmax=3.1 \rightarrow 5.2 keV

BERYLLIUM CRL AS A COMPACT, LOW-LOSS FOCUSING ELEMENT

- CRL normally used with many-lens set for tight focusing → high loss
- For XFELO, f ~ 100 m→ at most two-face unit
- Test Be-CRL, R=100 µm at APS
 - T > 98% @ 14.4 keV
 - Metrology & Talbot interferometry → deviation from parabolic surface < 1 μm
 - Excellent imaging quality
 - Can withstand the intense intra-cavity xray power (10-20 kW/mm²)

DIAMOND AS BRAGG REFLECTOR: EXCELLENT THERMO-MECHANICAL PROPERTIES

Y. Shvyd'ko, V. Blank, and S. Terentyev, MRS Bul., 42, 437 (2017)

THEORY: XFELO INTENSITY IS WELL BELOW THE DAMAGE THRESHOLD OF DIAMOND

×

N. Medvedev

Single shot effects:

- 1) Nonequilibrium electron kinetics ~100 fs
- × 2) Nonthermal melting ~150 fs (0.7 eV/atom, N_e ~1.5%)
- X 3) Thermal melting ~1-10 ps

Multishot effects:

- × 1) Melting, stresses, fatigue (require heating)
- x 2) Electrons recombine: fluorescence <1 ns
- x 3) Point defects are not produced
- 4) Surface effects may play a role ~1 μm

APS TEST FOR DIAMOND ENDURANCE AT X-RAY POWER DENSITY 10-20 KW/MM²

- Irradiation
 - 9 kW/mm² in 30x120 μm² spots (K-B mirror focusing) under medium vacuum
 - 12.5 kW/mm² in 30x40 μm² spots (Be-CRL focusing) under UHV (~10⁻⁸)
- Analysis: high-resolution (meV) topography
- T. Kolodziej, et al

Unfocussed X-ray beam burns stainless steel in few minutes

Irradiation 12.5 kW/mm² at APS 7-ID-B

TOPOGRAPH AFTER IRRADIATION INDICATES NO STRUCTURAL DAMAGE BUT BRAGG PEAK SHIFTS BY ~ 1 MEV OF THE ROCKING CURVES NEAR THE CARBON DEPOSITS

 $\delta E/E = \delta d/d = 1.6 \text{meV}/24 \text{ keV}$ Relative d-spacing change =7 10⁻⁸

CONCLUSIONS

• An XFELO is feasible from beam dynamics and X-ray optics

- Several projects for construction of ~8 GeV SCRF linac exist – LCLS-II-HE, Shanghai, EuroXFEL,...
- An XFELO with an optimized injector will producing fully coherent x-rays with $\mathfrak{B}_{av} \sim 10^{28}$
 - >10⁵ than DLSR
 - For < 13 keV, XFELO >100 than SASE
 - For >13 keV, SASE is supressed
- Strong scientific cases exist for narrow BW, coherent X-rays
 - An XFELO will drive the techniques already developed to a new level of capabilities
 - Novel techniques can be developed for novel sciences

THANKS TO:

- ANL: W. Grizolli, S. Kearney, R. Lindberg, T. Kolodziej, X. Shi, D. Shu, Y. Shvyd'ko
- SLAC: K. Bane, Z. Huang, Y. Ding, P. Emma, W. Fawley, J. Hastings, J. Krzywinski, G. Marcus, T. Maxwell
- Peking U./SLAC (student): W. Qin
- DESY: J. Zemella
- Cornell U.: S. Stoupin
- TISNCM: V. Blank, S. Terentyev
- CAS: N. Medvedev

